583 research outputs found

    Teaching computers to fold proteins

    Get PDF
    A new general algorithm for optimization of potential functions for protein folding is introduced. It is based upon gradient optimization of the thermodynamic stability of native folds of a training set of proteins with known structure. The iterative update rule contains two thermodynamic averages which are estimated by (generalized ensemble) Monte Carlo. We test the learning algorithm on a Lennard-Jones (LJ) force field with a torsional angle degrees-of-freedom and a single-atom side-chain. In a test with 24 peptides of known structure, none folded correctly with the initial potential functions, but two-thirds came within 3{\AA} to their native fold after optimizing the potential functions.Comment: 4 pages, 3 figure

    Hidden Markov models for labeled sequences

    Get PDF

    Overtime work, dual job holding and taxation

    Get PDF
    Traditionally, labour supply data do not include much information on hours and wages in secondary job or overtime work. In this paper, we estimate labour supply models based on survey information on hours and wages in overtime work and second job which is merged to detailed register information on income taxes, deductions, taxable income etc. We also allow for the effect of observed fixed costs in main occupation and unobserved fixed costs in second job, and a ‘stigmatization effect’ from unemployment. The estimated models follow a ‘Hausman-approach’. The results indicate that the labour supply elasticities are highly sensitive to the inclusion of information on overtime work and secondary job and to the handling of fixed costs of work. The estimated elasticities are numerically larger when explicit information on overtime and second job work is taken into account compared to traditional labour supply models without explicit information on overtime pay and second job wages. However, when the model allows for stigmatization effects and unobserved fixed costs of work in second job, the resulting elasticities reduce considerably.Labour supply; Dual job holding; Overtime work; Piecewise linear budget constraints

    Computational evidence for hundreds of non-conserved plant microRNAs

    Get PDF
    BACKGROUND: MicroRNAs (miRNA) are small (20–25 nt) non-coding RNA molecules that regulate gene expression through interaction with mRNA in plants and metazoans. A few hundred miRNAs are known or predicted, and most of those are evolutionarily conserved. In general plant miRNA are different from their animal counterpart: most plant miRNAs show near perfect complementarity to their targets. Exploiting this complementarity we have developed a method for identification plant miRNAs that does not rely on phylogenetic conservation. RESULTS: Using the presumed targets for the known miRNA as positive controls, we list and filter all segments of the genome of length ~20 that are complementary to a target mRNA-transcript. From the positive control we recover 41 (of 92 possible) of the already known miRNA-genes (representing 14 of 16 families) with only four false positives. Applying the procedure to find possible new miRNAs targeting any annotated mRNA, we predict of 592 new miRNA genes, many of which are not conserved in other plant genomes. A subset of our predicted miRNAs is additionally supported by having more than one target that are not homologues. CONCLUSION: These results indicate that it is possible to reliably predict miRNA-genes without using genome comparisons. Furthermore it suggests that the number of plant miRNAs have been underestimated and points to the existence of recently evolved miRNAs in Arabidopsis

    EasyGene – a prokaryotic gene finder that ranks ORFs by statistical significance

    Get PDF
    BACKGROUND: Contrary to other areas of sequence analysis, a measure of statistical significance of a putative gene has not been devised to help in discriminating real genes from the masses of random Open Reading Frames (ORFs) in prokaryotic genomes. Therefore, many genomes have too many short ORFs annotated as genes. RESULTS: In this paper, we present a new automated gene-finding method, EasyGene, which estimates the statistical significance of a predicted gene. The gene finder is based on a hidden Markov model (HMM) that is automatically estimated for a new genome. Using extensions of similarities in Swiss-Prot, a high quality training set of genes is automatically extracted from the genome and used to estimate the HMM. Putative genes are then scored with the HMM, and based on score and length of an ORF, the statistical significance is calculated. The measure of statistical significance for an ORF is the expected number of ORFs in one megabase of random sequence at the same significance level or better, where the random sequence has the same statistics as the genome in the sense of a third order Markov chain. CONCLUSIONS: The result is a flexible gene finder whose overall performance matches or exceeds other methods. The entire pipeline of computer processing from the raw input of a genome or set of contigs to a list of putative genes with significance is automated, making it easy to apply EasyGene to newly sequenced organisms. EasyGene with pre-trained models can be accessed at

    Hidden Neural Networks: A Framework for HMM/NN Hybrids

    Get PDF
    This paper presents a general framework for hybrids of Hidden Markov models (HMM) and neural networks (NN). In the new framework called Hidden Neural Networks (HNN) the usual HMM probability parameters are replaced by neural network outputs. To ensure a probabilistic interpretation the HNN is normalized globally as opposed to the local normalization enforced on parameters in standard HMMs. Furthermore, all parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum likelihood (CML) criterion. The HNNs show clear performance gains compared to standard HMMs on TIMIT continuous speech recognition benchmarks. On the task of recognizing five broad phoneme classes an accuracy of 84% is obtained compared to 76% for a standard HMM. Additionally, we report a preliminary result of 69% accuracy on the TIMIT 39 phoneme task. 1. INTRODUCTION Among speech research scientists it is widely believed that HMMs are one of the best and most successful modelling..

    CAncer bioMarker Prediction Pipeline (CAMPP) - A standardized framework for the analysis of quantitative biological data

    Get PDF
    With the improvement of -omics and next-generation sequencing (NGS) methodologies, along with the lowered cost of generating these types of data, the analysis of high-throughput biological data has become standard both for forming and testing biomedical hypotheses. Our knowledge of how to normalize datasets to remove latent undesirable variances has grown extensively, making for standardized data that are easily compared between studies. Here we present the CAncer bioMarker Prediction Pipeline (CAMPP), an open-source R-based wrapper (https://github.com/ELELAB/CAncer-bioMarker-Prediction-Pipeline -CAMPP) intended to aid bioinformatic software-users with data analyses. CAMPP is called from a terminal command line and is supported by a user-friendly manual. The pipeline may be run on a local computer and requires little or no knowledge of programming. To avoid issues relating to R-package updates, a renv .lock file is provided to ensure R-package stability. Data-management includes missing value imputation, data normalization, and distributional checks. CAMPP performs (I) k-means clustering, (II) differential expression/abundance analysis, (III) elastic-net regression, (IV) correlation and co-expression network analyses, (V) survival analysis, and (VI) protein-protein/miRNA-gene interaction networks. The pipeline returns tabular files and graphical representations of the results. We hope that CAMPP will assist in streamlining bioinformatic analysis of quantitative biological data, whilst ensuring an appropriate bio-statistical framework

    Intragenomic Matching Reveals a Huge Potential for miRNA-Mediated Regulation in Plants

    Get PDF
    microRNAs (miRNAs) are important post-transcriptional regulators, but the extent of this regulation is uncertain, both with regard to the number of miRNA genes and their targets. Using an algorithm based on intragenomic matching of potential miRNAs and their targets coupled with support vector machine classification of miRNA precursors, we explore the potential for regulation by miRNAs in three plant genomes: Arabidopsis thaliana, Populus trichocarpa, and Oryza sativa. We find that the intragenomic matching in conjunction with a supervised learning approach contains enough information to allow reliable computational prediction of miRNA candidates without requiring conservation across species. Using this method, we identify ∼1,200, ∼2,500, and ∼2,100 miRNA candidate genes capable of extensive base-pairing to potential target mRNAs in A. thaliana, P. trichocarpa, and O. sativa, respectively. This is more than five times the number of currently annotated miRNAs in the plants. Many of these candidates are derived from repeat regions, yet they seem to contain the features necessary for correct processing by the miRNA machinery. Conservation analysis indicates that only a few of the candidates are conserved between the species. We conclude that there is a large potential for miRNA-mediated regulatory interactions encoded in the genomes of the investigated plants. We hypothesize that some of these interactions may be realized under special environmental conditions, while others can readily be recruited when organisms diverge and adapt to new niches

    SNPest:a probabilistic graphical model for estimating genotypes

    Get PDF
    BACKGROUND: As the use of next-generation sequencing technologies is becoming more widespread, the need for robust software to help with the analysis is growing as well. A key challenge when analyzing sequencing data is the prediction of genotypes from the reads, i.e. correct inference of the underlying DNA sequences that gave rise to the sequenced fragments. For diploid organisms, the genotyper should be able to predict both alleles in the individual. Variations between the individual and the population can then be analyzed by looking for SNPs (single nucleotide polymorphisms) in order to investigate diseases or phenotypic features. To perform robust and high confidence genotyping and SNP calling, methods are needed that take the technology specific limitations into account and can model different sources of error. As an example, ancient DNA poses special challenges as the data is often shallow and subject to errors induced by post mortem damage. FINDINGS: We present a novel approach to the genotyping problem where a probabilistic framework describing the process from sampling to sequencing is implemented as a graphical model. This makes it possible to model technology specific errors and other sources of variation that can affect the result. The inferred genotype is given a posterior probability to signify the confidence in the result. SNPest has already been used to genotype large scale projects such as the first ancient human genome published in 2010. CONCLUSIONS: We compare the performance of SNPest to a number of other widely used genotypers on both real and simulated data, covering both haploid and diploid genomes. We investigate the effects of read depth, of removing adapters before mapping and genotyping, of using different mapping tools, and of using the correct model in the genotyping process. We show that the performance of SNPest is comparable to existing methods, and we also illustrate cases where SNPest has an advantage over other methods, e.g. when dealing with simulated ancient DNA. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1756-0500-7-698) contains supplementary material, which is available to authorized users

    Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server

    Get PDF
    When using conventional transmembrane topology and signal peptide predictors, such as TMHMM and SignalP, there is a substantial overlap between these two types of predictions. Applying these methods to five complete proteomes, we found that 30–65% of all predicted signal peptides and 25–35% of all predicted transmembrane topologies overlap. This impairs predictions of 5–10% of the proteome, hence this is an important issue in protein annotation
    corecore